Continuous Non-Invasive Monitoring of Tidal Volumes by Measurement of Tidal Impedance in Neonatal Piglets
نویسندگان
چکیده
BACKGROUND Electrical Impedance measurements can be used to estimate the content of intra-thoracic air and thereby give information on pulmonary ventilation. Conventional Impedance measurements mainly indicate relative changes, but no information concerning air-volume is given. The study was performed to test whether a 3-point-calibration with known tidal volumes (VT) during conventional mechanical ventilation (CMV) allows subsequent calculation of VT from total Tidal-Impedance (tTI) measurements using Quadrant Impedance Measurement (QIM). In addition the distribution of TI in different regions of the thorax was examined. METHODOLOGY AND PRINCIPAL FINDINGS QIM was performed in five neonatal piglets during volume-controlled CMV. tTI values at three different VT (4, 6, 8 ml/kg) were used to establish individual calibration curves. Subsequently, each animal was ventilated with different patterns of varying VT (2-10 ml/kg) at different PEEP levels (0, 3, 6, 9, 12 cmH(2)O). VT variation was repeated after surfactant depletion by bronchoalveolar lavage. VT was calculated from tTI values (VT(calc)) and compared to the VT delivered by the ventilator (VT(PNT)). Bland-Altman analysis revealed good agreement between VT(calc) and VT(PNT) before (bias -0.08 ml; limits of agreement -1.18 to 1.02 ml at PEEP = 3 cmH(2)O) and after surfactant depletion (bias -0.17 ml; limits of agreement -1.57 to 1.22 ml at PEEP = 3 cmH(2)O). At higher PEEP levels VT(calc) was lower than VT(PNT), when only one fixed calibration curve (at PEEP 3 cmH(2)O) was used. With a new calibration curve at each PEEP level the method showed similar accuracy at each PEEP level. TI showed a homogeneous distribution over the four assessed quadrants with a shift toward caudal regions of the thorax with increasing VT. CONCLUSION Tidal Impedance values could be used for precise and accurate calculation of VT during CMV in this animal study, when calibrated at each PEEP level.
منابع مشابه
Standardization and Validation of Non-invasive Monitoring of End Tidal Carbon Dioxide in Neonates via Nasal Cannula: An Observational Study
Background: Carbon dioxide (CO2) is a by-product of cellular metabolism, which could be considered as a reflection of metabolism, circulation, and ventilation. Arterial blood gas analysis (ABG) is the gold standard of monitoring for CO2. However, is an expensive method leading to blood loss and iatrogenic anemia. In addition, each sample is only a...
متن کاملMeasurement of tidal volume by using transthoracic impedance variations in rats.
The application of impedance pneumography for monitoring respiration in small animals has been limited by problems with calibration. With improved instrumentation, we describe the calibration of tidal volume in anesthetized rats. The detection of changes in voltage, reflecting the electrical impedance variations associated with respiration, was optimized by using disposable adhesive silver-silv...
متن کاملRemote Sensing of Tidal Situation by Monitoring Changes in Suspended Sediment Concentration in Surface Waters
Collecting information on suspended sediments concentration (SSC) in coastal waters and estuaries is vital for proper management of coastal environments. Traditionally, SSC used to be measured by time consuming and costly point measurements. This method allows the accurate measurement of SSC only for a point in space and time. Remote sensing from air-borne and space-borne sensors have proved to...
متن کاملIncreasing accuracy of TPXO global tidal model using TELEMA numerical model in Bushehr Bay
Abstract Several methods have been developed such as experimental methods, numerical and computational models for studying the prediction of water level. The purpose of this research is to evaluate and verification Telemac's numerical tidal model in Bushehr Bay waters using measured data. In this regard, the Telemac 2D module has been used to simulate the tide in a A course, 15 days from 01/08...
متن کاملNon-invasive respiratory monitoring using long-period fiber grating sensors.
In non-invasive ventilation, continuous monitoring of respiratory volumes is essential. Here, we present a method for the measurement of respiratory volumes by a single fiber-grating sensor of bending and provide the proof-of-principle by applying a calibration-test measurement procedure on a set of 18 healthy volunteers. Results establish a linear correlation between a change in lung volume an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2011